Regulation of sterol and glycoalkaloid biosynthesis in potato (Solanum tuberosum L.) – Identification of key genes and enzymatic steps

نویسنده

  • Nurun Nahar
چکیده

Steroidal glycoalkaloids (SGA) are toxic secondary metabolites present in some members of the Solanaceae family, including potato and tomato. The SGA level in tubers of potato (Solanum tuberosum L.) depends on genetic factors, but can also increase in response to e.g. wounding and light exposure. An upper limit of 200 mg SGA/kg f.w. is recommended in tubers used for human consumption. The SGA biosynthesis and its regulation are not fully understood, although cholesterol is often suggested as a likely SGA precursor. To gain more knowledge about the genetic regulation of SGA biosynthesis, a microarray study was performed during mechanical wounding or light exposure treatment of tubers from two potato cultivars. The results revealed six genes related to sterol and SGA biosynthesis as up-regulated during both treatments, and to be associated with increased SGA content. One of the genes, StDWF1, encoding a sterol Δ24-reductase similar to Arabidopsis DWF1, was further investigated in transgenic potato plants. Down-regulation of StDWF1 lowered the level of cholesterol as well as of SGA, demonstrating an important role of this gene in SGA synthesis. Homeostatic regulation of cholesterol metabolism in plants was investigated by over-expression of mouse cholesterol hydroxylases. In Arabidopsis, increased levels of hydroxylated sterols altered sterol/steroid metabolism as well as reduced plant growth. Similar effects were not observed in corresponding potato transformants, indicating species differences in sterol metabolism. To evaluate cholesterol as a SGA precursor, deuterium-labeled cholesterol was applied to potato shoots. Using LC-MS, label was shown to be incorporated into SGA. The work shows that increased SGA synthesis in potato tubers is mediated by the concerted action of at least six key genes, acting at different positions in steroid biosynthesis. Results also establish cholesterol as a SGA precursor in potato plants.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reduction of cholesterol and glycoalkaloid levels in transgenic potato plants by overexpression of a type 1 sterol methyltransferase cDNA.

Transgenic potato (Solanum tuberosum cv Désirée) plants overexpressing a soybean (Glycine max) type 1 sterol methyltransferase (GmSMT1) cDNA were generated and used to study sterol biosynthesis in relation to the production of toxic glycoalkaloids. Transgenic plants displayed an increased total sterol level in both leaves and tubers, mainly due to increased levels of the 24-ethyl sterols isofuc...

متن کامل

Sterol side chain reductase 2 is a key enzyme in the biosynthesis of cholesterol, the common precursor of toxic steroidal glycoalkaloids in potato.

Potatoes (Solanum tuberosum) contain α-solanine and α-chaconine, two well-known toxic steroidal glycoalkaloids (SGAs). Sprouts and green tubers accumulate especially high levels of SGAs. Although SGAs were proposed to be biosynthesized from cholesterol, the biosynthetic pathway for plant cholesterol is poorly understood. Here, we identify sterol side chain reductase 2 (SSR2) from potato as a ke...

متن کامل

Comparative metabolite and genome analysis of tuber-bearing potato species.

The cultivated potato Solanum tuberosum is unrivalled among crop plants for its wild relatives, which potentially represent an important source of genetic diversity to improve the nutritional value of potato varieties and understand metabolism regulation. The main aim of this research was to profile human health-related metabolites in a number of clones from 13 Solanum species. Results from HPL...

متن کامل

Two Cytochrome P450 Monooxygenases Catalyze Early Hydroxylation Steps in the Potato Steroid Glycoalkaloid Biosynthetic Pathway.

α-Solanine and α-chaconine, steroidal glycoalkaloids (SGAs) found in potato (Solanum tuberosum), are among the best-known secondary metabolites in food crops. At low concentrations in potato tubers, SGAs are distasteful; however, at high concentrations, SGAs are harmful to humans and animals. Here, we show that POTATO GLYCOALKALOID BIOSYNTHESIS1 (PGA1) and PGA2, two genes that encode cytochrome...

متن کامل

Transcript profiling of two potato cultivars during glycoalkaloid-inducing treatments shows differential expression of genes in sterol and glycoalkaloid metabolism

Steroidal glycoalkaloids (SGA) are sterol-derived neurotoxic defence substances present in several members of the Solanaceae. In the potato (Solanum tuberosum), high SGA levels may render tubers harmful for consumption. Tuber SGA levels depend on genetic factors, and can increase as a response to certain stresses and environmental conditions. To identify genes underlying the cultivar variation ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011